

Executive Summary

This year has been dry to date but the volume of likely subsidence claims is, at this time of year, much more dependent on rainfall to come than that so far. There is no evidence that a dry spring leads to a dry summer. While a dry summer with high claims volumes is possible, above average rainfall and low volumes are too, despite the dry start.

At present long-range forecasts suggest that the chance of dry conditions this year is no greater than normal.

South-east England rainfall has been identified as a good indicator of subsequent UK subsidence claims activity, and is the metric we focus on in this report

Recent Rainfall

Rainfall so far this year has been below average across south-east England, particularly through March.

Rainfall Outlook

Generally settled conditions are most likely over the next two weeks followed by a switch to more changeable conditions with spells of wet weather interspersed with drier periods. Around average rainfall is most likely over the next three months; however, a dry summer or an extended particularly dry period within an otherwise around average summer overall cannot be ruled out.

Comparison Years

Years with similar rainfall to date had a wide range of outcomes. Some years had above average rainfall and low numbers of subsidence claims. Other years, such as 2003, with an extended particularly dry period and experienced high numbers of subsidence claims. The rest of the comparison years had around average subsidence claims.

Recent Rainfall Conditions (South-east England)

So far this year

Rainfall in south-east England from January to April 2025 has so far been below average. South-east England had its 4th driest March in the 153-year record with 14% of the long-term average rainfall for the month. Rainfall for the period February through April inclusive was the 12th driest on record, with 56% of the long-term average rainfall for this period. Very low pre-August activity. Pre-August ACE index is positively correlated (Pearson r^2 =0.52) with total seasonal ACE index.

Rainfall Outlook (South-east England)

Monthly Outlook

Over the next two weeks the most likely weather pattern is for generally settled and dry conditions, although some showers are possible at times. As we move into the second half of May there is less certainty, but the most likely outcome is for a change to more changeable conditions with spells of wet weather interspersed with some dry periods.

Extended Outlook

The long-range seasonal forecast models and climate signals currently indicate that rainfall is most likely to be around average across south-east England over the next three months. However, the influence of climate signals is generally weak at this time of year and an exceptionally dry (or wet) summer overall cannot yet be ruled out.

In addition, a period of above average rainfall followed by a particularly dry period can result in around average rainfall over the three months overall, so a particularly or even extremely dry period remains possible.

Comparison Years (South-East England)

For more information on comparison years please see the <u>EuroTempest</u> Subsidence Risk Assessment: Supplementary Information.

Comparison years: 2003, 2011, 2017, 2019, and 2021

These years have been chosen based on having rainfall accumulation across the period February to April similar to this year, with at least one particularly or exceptionally dry period across these months.

Lowest 30 years with February-April Rainfall in South-east England

Rank	Year	Total Rain	Rank	Year	Total Rain	Rank	Year	Total Rain
		(Feb-Apr)			(Feb-Apr)			(Feb-Apr)
1	1938	32.0	11	1973	83.6	21	1875	99.6
2	1976	52.8	12	2025	84.7	22	1895	101.1
3	1929	53.9	13	2021	87.1	23	1962	101.9
4	1956	66.1	14	1955	88.3	24	1949	102.7
5	1944	71.3	15	2003	88.88	25	2015	104.9
6	2011	73.9	16	1893	89.3	26	1902	105.5
7	1921	75.7	17	1887	89.7	27	1896	108.1
8	1891	77.5	18	2019	91.4	28	1997	108.1
9	1892	79.7	19	1893	92.8	29	1945	108.2
10	1943	80.0	20	2017	94.2	30	1953	108.5

Table 1: Comparison years referenced in the plot and text are highlighted in the table.

Figure 1 shows the 30-day running rainfall totals during these comparison years, compared to the rainfall so far this year.

There is a wide range of outcomes across the comparison years. Some years, such as 2017 and 2021, were followed by well above average rainfall through the summer months (June, July, and August) leading to below average numbers of subsidence claims. Others have around or above average claims numbers. It should be noted that there are there are no comparison years in which there is below average rainfall throughout the entire summer period (June, July, and August).

In 2003, rainfall through the summer was around or slightly below average until August, which was particularly dry, resulting in above average numbers of claims for the year.

While the number of claims in 2011 was relatively high compared to recent years, it marked a transition to generally lower claims numbers and had fewer claims than many of the preceding years.

The dry period during May was offset by the above average rainfall through the summer months.

The remaining comparison year, 2019, had around average rainfall overall over the summer months, and no extended particularly dry period. The number of subsidence claims in this year were around average.

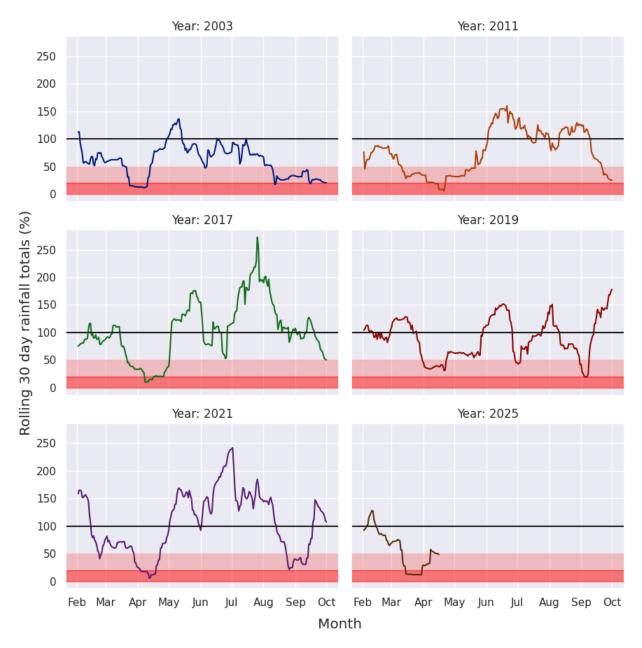


Figure 1: 30-day running rainfall totals during comparison years, compared to rainfall in so far in 2025. Data are complete up to end of April. For more information about this plot please see the <u>EuroTempest Subsidence Risk Assessment: Supplementary Information.</u>

Summary

While some years with dry starts have resulted in high subsidence claims, there are also comparison years without an extended particularly dry period through the summer months and with normal or even below normal numbers of claims. Please direct any queries regarding this EuroTempest Subsidence Risk Assessment to enquiries@eurotempest.com.

This is the first EuroTempest Subsidence Risk Assessment of 2025, and a further update will be issued by the 5th of June.

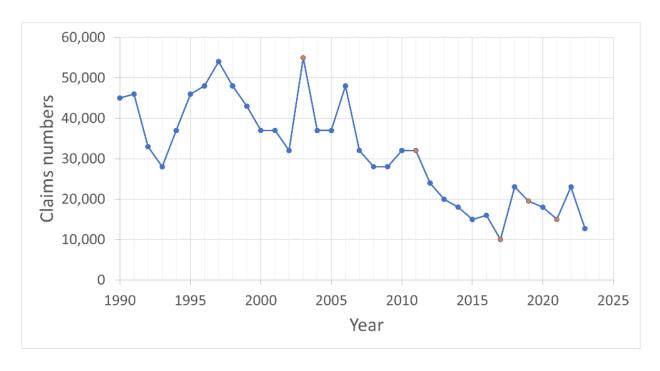


Figure 2: Claims numbers since 1990, rounded to the nearest 1000. Claims numbers for 2024 are not yet available. Comparison years are highlighted. Source: ABI

Industry Total Claims for Selected Years						
Year	Total Subsidence Claims					
2003	55,000					
2011	32,000					
2017	10,000					
2019	19,500					
2021	15,000					
Average (2018-2023)	19,000					

Table 2: Claims numbers for 2024 are not yet available. For more information about historic claims numbers please see the <u>EuroTempest Subsidence Risk Assessment: Supplementary Information</u>.